Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors

نویسندگان

  • Eun-Young Shin
  • Chan-Soo Lee
  • Cheong-Yong Yun
  • So-Yoon Won
  • Hyong-Kyu Kim
  • Yong Hee Lee
  • Sahng-June Kwak
  • Eung-Gook Kim
چکیده

BACKGROUND Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The present study explored the possibility that NM II regulates neuronal differentiation, particularly morphological changes in growth cones and the distal axon, through guanine nucleotide exchange factors (GEFs) of the Dbl family. PRINCIPAL FINDINGS NM II colocalized with GEFs, such as βPIX, kalirin and intersectin, in growth cones. Inactivation of NM II by blebbistatin (BBS) led to the increased formation of short and thick filopodial actin structures at the periphery of growth cones. In line with these observations, FRET analysis revealed enhanced Cdc42 activity in BBS-treated growth cones. BBS treatment also induced aberrant targeting of various GEFs to the distal axon where GEFs were seldom observed under physiological conditions. As a result, numerous protrusions and branches were generated on the shaft of the distal axon. The disruption of the NM II-GEF interactions by overexpression of the DH domains of βPIX or Tiam1, or by βPIX depletion with specific siRNAs inhibited growth cone formation and induced slender axons concomitant with multiple branches in cultured hippocampal neurons. Finally, stimulation with nerve growth factor induced transient dissociation of the NM II-GEF complex, which was closely correlated with the kinetics of Cdc42 and Rac1 activation. CONCLUSION Our results suggest that NM II maintains proper morphology of neuronal growth cones and the distal axon by regulating actin dynamics through the GEF-Rho GTPase signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking Ras to myosin function: RasGEF Q, a Dictyostelium exchange factor for RasB, affects myosin II functions

Ras guanine nucleotide exchange factor (GEF) Q, a nucleotide exchange factor from Dictyostelium discoideum, is a 143-kD protein containing RasGEF domains and a DEP domain. We show that RasGEF Q can bind to F-actin, has the potential to form complexes with myosin heavy chain kinase (MHCK) A that contain active RasB, and is the predominant exchange factor for RasB. Overexpression of the RasGEF Q ...

متن کامل

Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex.

Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for direc...

متن کامل

Angiotensin II up-regulates the leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF), a regulator of G protein signaling domain-containing RhoGEF, in vascular smooth muscle cells.

In vascular smooth muscle, stimulation of heterotrimeric G protein-coupled receptors (GPCRs) by various contractile agonists activates intracellular signaling molecules to result in an increase in cytosolic Ca2+ and the subsequent phosphorylation of myosin light chain (MLC) by Ca2+/calmodulin-dependent MLC kinase. In addition, a portion of agonist-induced contraction is partially mediated by th...

متن کامل

Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge.

Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotid...

متن کامل

Drosophila RhoGEF2 Associates with Microtubule Plus Ends in an EB1-Dependent Manner

Members of the Rho/Rac/Cdc42 superfamily of GTPases and their upstream activators, guanine nucleotide exchange factors (GEFs) , have emerged as key regulators of actin and microtubule dynamics. In their GTP bound form, these proteins interact with downstream effector molecules that alter actin and microtubule behavior. During Drosophila embryogenesis, a Galpha subunit (Concertina) and a Rho-typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014